MIC2
The world’s first Magnetic Induction qPCR Cycler. The box is small. The ideas are big.
Features :
This product is no longer in stock
Availability date:
Mic uses a patented magnetic induction technology to achieve heating and forced airflow for cooling. This means faster heating and cooling times. Back that up with a robust optical system that reads all four channels simultaneously and running multichannel assays has never been quicker.
Mic’s spinning aluminium rotor gives unsurpassed temperature uniformity during dynamic and static operations. All other block-based cyclers only promise static uniformity, which could lead to inaccurate data, as samples aren’t heated and cooled equally. You might think this level of accuracy requires constant calibration, but Mic’s good to go right out of the box. You don’t need to calibrate – ever.
Mic takes up less space on the bench than your lab book. And weighing in at just 2 kg, this is the most portable qPCR cycler on the market. Even four Mic’s stacked together take up less bench space than your current cycler.
Multiple Mics can be operated from one workstation so 48 becomes 96, and 96 becomes 192. Bluetooth technology means fewer cables too.
Next generation qPCR analysis software that is user-friendly and packed with intelligent features. See your results with detailed statistical analysis as soon as your run has completed. Designed to meet MIQE specifications, the Mic software offers you the most up-to-date qPCR analysis.
Take advantage of Mic’s modular functionality and amazing reproducibility by combining multiple runs from multiple instruments into one analysis. With the ability to combine up to 10 runs you can analyse up to 480 samples at one time. Now there is no need to wait for samples to be batched into one 96 or 384 well run. Complete the runs at the time you need them done and see the results now, not later.
Confidently detect 2 fold differences in gene expression levels. Whether it’s using standard curves for Absolute Quantification or determining gene expression using Relative Quantification through REST, know that the performance you get from the Mic will always ensure the highest level of quantitative precision.
Detect differences within one cycle. When you need to quantify small differences in relative gene expression, Mic will deliver the extreme levels of quantitative precision you need. Especially for bacterial genetics where minor differences in gene expression can multiply into big differences.
Down to single digit copies of DNA. Have the power to detect high and low copy numbers of your target. Be it using Absolute Quantification to detect viral loads, or simply determining a PCR efficiency using your standard curve, Mic will deliver the dynamic range you need, accurately and precisely.
Ultra tight replicates every time. Be confident in the knowledge that each well is behaving identically to generate qPCR replicate data that is truly repeatable. Our focus on temperature uniformity means you can have confidence in your results whether its quantifying gene expression, determining genotypes, or measuring viral load.
Get the same result across multiple runs and instruments. We build our instruments to perfection so that each one is identical to the next. This means we can reproduce the same result not just across multi-runs, but instruments as well. Now you can combine multiple runs with minimal concern for variation. Inter-run calibrators become more of a quality control measure than a correction tool. And using sophisticated analysis software incorporating intelligent methods such as LinRegPCR, means we can further improve the qPCR reproducibility by minimising human error through analytical automation.
Duplicate runs easily on different instruments. Mic’s reproducibility even extends to very low copy numbers. Critical in applications such as Relative Quantification, Absolute Quantification and Copy Number Variants (CNV).
Maintain assay performance even at speed. Get high quality data, fast ! Mic’s speed is on par with the fastest instruments on the market. But unlike the competition Mic’s superior temperature uniformity and accuracy means you don’t sacrifice on the quality of your qPCR. Completing runs in under 30 minutes is the new standard with Mic, not the exception.
Lowest possible cross talk. If it’s molecular diagnostic (MDx) detection of pathogens, or genotyping using Allelic Discrimination, Mic has highly optimized filter sets to minimize your dye cross talk when multiplexing your real time PCR. With dedicated high powered LED and detectors per channel, detect all four colours in 1 sec during acquisition. No dye colour compensation or dye calibration needed – ever !
Thermal performance | |
---|---|
Temperature accuracy | ±0.25°C |
Temperature uniformity | ±0.10°C (HRM ±0.05°C) |
Ramp rates | Heating : 5°C/s, cooling : 4°C/s |
Temperature input range | 40 – 99°C |
Optical | |
Detectors | Photodiode per channel |
Excitation sources | High energy light emitting diode for each channel |
Channels | Green : ex 465 nm, em 510 nm Yellow : ex 540 nm, em 570 nm Orange : ex 585 nm, em 618 nm Red : ex 635 nm em, 675 nm |
Acquisition time | 1 second |
Reaction vessels | |
Samples per instrument | 48 |
Reaction volume range | 10 – 30 µl |
Electrical | |
AC input | 100-240 VAC, 50/60 Hz 4.0A |
Physical | |
Dimensions (W x D x H) | 15.0 x 15.0 x 13.0 cm (closed) / 26.5 cm (open) |
Weight | 2.1 kg |
Operating environment | |
Temperature | 18 – 35ºC |
Relative humidity | 20 – 80% |
Mic’s RQ software uses up-to-date mathematical models and well-founded statistical analysis, allowing you to compare gene expression levels for different targets across multiple groups. All the necessary calculation and statistics are carried out within the software. Data is reported both numerically and graphically. With Mic’s superior temperature uniformity you can easily detect differences between samples as little as 0.2 fold.
Using a standard curve, AQ analysis allows you to determine the absolute amount of a genetic target. This five point, two fold dilution series produced an efficiency of 98%. The percentage variation between the given and calculated concentrations was no greater than 5% allowing for accurate quantification of the unknown sample.
Use differential melt curves from various types of chemistries, including quenched FRET dual hybridization probes, beacon probes or Plexor to characterise a sample’s genotype. Melt peaks can be inverted to accommodate the different chemistry types.
Determine genotypes using dual labelled hydrolysis probes. With each probe designed toward a genetic variant, classify each genotype by using real time amplification data. Use the Assay library design feature to setup your target alleles and allow the software to call the unknowns automatically at the touch of a button.
Mic’s optional HRM analysis characterises DNA samples according to their melt behaviour so you can identify mutations. HRM is the perfect tool for applications including determining allele prevalence, screening for loss of heterozygosity, DNA fingerprinting, DNA methylation, species identification and calculating the ratio of somatic acquired mutations. Even difficult Class IV SNPs are no problem for Mic – the example here clearly shows the A base allele (red), T base allele (blue) and the heterozygote (purple).
The Identifier analysis uses a logic engine to help automate the identification of a target. The logic engine is a set of rules that are defined by the user that will enable the software to make the identification. Controls are also utilised to make appropriate decisions regarding the result of each sample and the run as a whole. These rules can be pre-defined for each target used in the assay individually or as a whole group of targets. Identifier is a great tool for anyone wanting to do their own in-house diagnostics.
Brochure